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ABSTRACT
BACKGROUND: Hypothalamic-pituitary-adrenal axis dysregulation, which is typically assessed by measuring
cortisol levels, is associated with cognitive dysfunction, hippocampal atrophy, and increased risk for mild cognitive
impairment and Alzheimer’s disease (AD). However, little is known about the role of hypothalamic-pituitary-adrenal
axis dysregulation in moderating the effect of high levels of amyloid-β (Aβ1) on cognitive decline in the preclinical
phase of AD, which is often protracted, and thus offers opportunities for prevention and early intervention.
METHODS: Using data from a 6-year multicenter prospective cohort study, we evaluated the relation between Aβ
level, plasma cortisol level, and cognitive decline in 416 cognitively normal older adults.
RESULTS: Results revealed that Aβ1 older adults experienced faster decline than Aβ2 older adults in all cognitive
domains (Cohen’s d at 6-year assessment 5 0.37–0.65). They further indicated a significant interaction between Aβ
and cortisol levels for global cognition (d 5 0.32), episodic memory (d 5 0.50), and executive function (d 5 0.59)
scores, with Aβ1 older adults with high cortisol levels having significantly faster decline in these domains compared
with Aβ1 older adults with low cortisol levels. These effects were independent of age, sex, APOE genotype, anxiety
symptoms, and radiotracer type.
CONCLUSIONS: In cognitively healthy older adults, Aβ1 is associated with greater cognitive decline and high
plasma cortisol levels may accelerate the effect of Aβ1 on decline in global cognition, episodic memory, and
executive function. These results suggest that therapies targeted toward lowering plasma cortisol and Aβ levels may
be helpful in mitigating cognitive decline in the preclinical phase of AD.
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Alzheimer’s disease (AD) begins with the accumulation of
cortical amyloid-β (Aβ), estimated to occur up to 20 years
before individuals meet clinical criteria for dementia (1,2).
Prospective studies of cognitively normal (CN) older adults
with abnormally high levels of Aβ (i.e., Aβ1) show a subtle but
persistent decline in cognition, particularly in memory and
working memory, which reflect the early downstream neuro-
degenerative effects of Aβ (3–9). Cognitive decline associated
with Aβ continues until individuals meet clinical classification
for mild cognitive impairment (MCI) and ultimately AD (1,2).
Despite the strong risk for cognitive decline associated with
Aβ1 in CN older adults, increasing evidence indicates that the
nature and rate of Aβ-related cognitive decline can be moderated
by genetic polymorphisms [e.g., APOE genotype (10)], socio-
demographic [e.g., intelligence or cognitive reserve (11)], and
lifestyle [e.g. physical exercise (12)] factors. Consequently, eluci-
dation of the biological processes by which such factors influence
Aβ-related neurotoxicity may increase the understanding of
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AD pathogenesis and inform strategies designed to mitigate
Aβ-related neurodegeneration.

Converging data suggest that dysregulation of the
hypothalamic-pituitary-adrenal (HPA) axis may also moderate
Aβ-related cognitive decline in AD. For example, animal
studies have observed that early and prolonged exposure to
glucocorticoids can promote AD-related neuropathology (13–16)
and contribute to the development of cognitive impairment (15).
Studies in humans show that HPA axis dysregulation, as
evidenced by increased cortisol levels, is associated with
reduced hippocampal volume, gray matter, and cognitive func-
tion in CN community-dwelling older adults (17,18). Further-
more, cortisol levels are found to be elevated in patients with
clinically classified amnestic MCI and AD and are associated
with increased cognitive decline (19), as well as increased risk
for developing dementia in patients with MCI (20). A recent study
observed a strong association between plasma cortisol levels
and cortical Aβ levels, with each unit increase in cortisol levels
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associated with a 1-unit increase in 11C-Pittsburgh compound B
(PiB) standardized uptake value (SUV) ratio (SUVR) values in a
sample consisting of CN older adults (n 5 22) and older adults
with MCI (n 5 51) and AD (n 5 26) from the Alzheimer Disease
Neuroimaging Initiative cohort (21). Further, a recent prospective
cohort study (22) from the Australian Imaging, Biomarkers and
Lifestyle (AIBL) study observed that Aβ1 CN older adults with
increased anxiety symptoms, which are linked to HPA axis
dysregulation (23,24), experienced accelerated decline in verbal
memory, language, and executive function. Collectively, these
data suggest that HPA axis dysregulation may influence rela-
tionships between Aβ-related neurotoxicity and cognitive decline
in preclinical AD. However, no study of which we are aware has
investigated prospectively the relation between an objective
biological index of HPA axis function, such as cortisol, Aβ, and
cognition, in this phase of AD.

The aim of this study was to evaluate the relationships
between plasma cortisol levels, Aβ levels, and cognitive
change in a large cohort of CN older adults followed up for
72 months. We hypothesized that Aβ1 would be associated
with greater cognitive decline, and that increased cortisol
levels would moderate cognitive decline related to Aβ1, such
that Aβ1 CN older adults with high cortisol levels would show
greater rates of decline in cognitive function compared with
Aβ1 CN older adults with low cortisol levels. In light of data
suggesting that elevated glucocorticoids have a particularly
neurotoxic effect on the hippocampus (18,25–29), we
expected that any moderating effect of cortisol on Aβ-related
cognitive decline would be greatest for episodic memory.
METHODS AND MATERIALS

CN older adults (n = 416) enrolled in the AIBL study (30)
underwent Aβ neuroimaging and provided a blood sample to
assess plasma cortisol levels. Selection into the full AIBL
cohort was controlled to ensure 1) a wide age distribution from
60 years through to 100 years and 2) enrollment of approx-
imately 50% of individuals with subjective memory com-
plaints. Exclusion criteria for the CN older adult cohort were
diagnosis of schizophrenia, depression (score $6 on the
Geriatric Depression Scale Short Form), Parkinson disease,
cancer (except basal cell skin carcinoma) within the last 2
years, symptomatic stroke, uncontrolled diabetes, sleep
apnea, and current regular alcohol use of more than two
standard drinks per day for women or more than four for
men. Institutional research committees of Austin Health,
St. Vincent’s Health, Hollywood Private Hospital, and Edith
Cowan University approved the AIBL study; all participants
provided written informed consent.

Amyloid Positron Emission Tomography Imaging and
APOE Genotyping

Aβ imaging with positron emission tomography was
conducted using PiB, 18F-florbetapir, or 18F-flutemetamol. A
30-minute acquisition was started 40 minutes after PiB
injection, whereas 20-minute acquisitions were performed 50
minutes after florbetapir injection and 90 minutes after flute-
metamol injection. For PiB, positron emission tomography
SUV data were summed and normalized to the cerebellar
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cortex SUV, yielding a region to cerebellar ratio termed SUVR.
For florbetapir, SUVR was generated using the entire cerebel-
lum as the reference region; for flutemetamol, the pons was
used as the reference region for SUVR. In line with previous
studies, SUVR was classified dichotomously as either negative
or positive (i.e., Aβ2 or Aβ1). For PiB, an SUVR threshold $1.5
was used. For florbetapir and flutemetamol, SUVR thresholds
of $1.11 and $0.62 were used, respectively. DNA extraction
and genotyping were performed as previously described
(10,31–33).

Plasma Cortisol Levels

Morning fasted plasma samples were analyzed using a com-
mercial cortisol enzyme-linked immunosorbent assay (IBL
International GmbH, Hamburg, Germany). The cortisol
enzyme-linked immunosorbent assay was performed as per
manufacturer instructions. Briefly, wells are precoated with
anticortisol monoclonal antibody, 20 μL of standard; controls
and samples were dispensed in duplicate into the desired wells,
followed by 200 μL of enzyme conjugate. Wells were then
mixed for 10 seconds, incubated for 1 hour at room temper-
ature, and washed three times before the addition of 100 μL of
substrate solution and incubation for 15 minutes at room
temperature. After incubation, 100 μL of stop solution was
added, and the optical density of each well was then measured
at 450 nm using a FLUOstar OPTIMA microplate reader (BMG
LABTECH GmbH, Ortenberg, Germany). Sample optical density
was converted to cortisol concentrations (in nanograms per
milliliter) using the established standard curve, calculated using
a four-parameter logistic model. The mean plasma cortisol level
in the full sample was 143.9 ng/mL (SD = 62.7; range = 19.6–
522.6). Because the distribution of raw cortisol values was highly
skewed and non-normal (Shapiro-Wilk test = 0.94, p , 1 310-11)
and could not be corrected to normal using log10 transformation
(Shapiro-Wilk test = 0.97, p , 1 310-7), they were dichotomized
using a median split procedure (17,19,34). Mean cortisol levels
in the resultant low-cortisol and high-cortisol groups, stratified by
Aβ status, are reported in Table 1.

Vascular Risk Factors

A count of vascular risk factors was obtained by summing the
following criteria: hypertension (blood pressure$ 140/90 mm Hg
or currently undergoing treatment with an antihypertensive
medication), dyslipidemia (fasting serum total cholesterol
$ 6.22 mmol/L, fasting serum triglycerides $ 2.26 mmol/L, or
currently undergoing treatment with statin or fibrate medications),
obesity (body mass index . 30 kg/m2), smoking (ever smoked
.20 cigarettes per day for more than 1 year), diabetes (fasting
plasma glucose . 7 mmol/L or currently undergoing treatment
with diabetes medication), high homocysteine levels (males .

16.2 μmol/L; females . 13.6 μmol/L), or chronic kidney disease
(estimated glomerular filtration rate , 45 mL/min (35,36).

Anxiety and Depressive Symptoms

The Hospital Anxiety and Depression Scale (37) was used to
assess anxiety and depressive symptoms. Scores $8 on each
subscale are indicative of clinically significant anxiety and
depressive symptoms (37).
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Table 1. Sample Characteristics in the Full Sample and Cortisol and Ab Groups (total N 5 416)

Low Cortisol/
Aβ2 (1)

High Cortisol/
Aβ2 (2)

Low Cortisol/
Aβ1 (3)

High Cortisol/
Aβ1 (4) Test of Difference

χ2 or FFull Sample n 5 158 n 5 162 n 5 50 n 5 46 p Pairwise Contrasts

Age, Years, Mean (SD) 69.3 (6.6) 67.9 (6.4) 68.5 (5.5) 73.3 (7.9) 72.8 (6.5) 14.85 ,.001 3,4 . 1,2

Sex, n (%) 1.85 .60 —

Male 186 (44.7) 72 (45.6) 70 (43.2) 26 (52.0) 18 (39.1)

Female 230 (55.3) 86 (54.4) 92 (56.8) 24 (48.0) 28 (60.9)

Education, n (%) 4.46 .22 —

,15 Years 263 (63.5) 100 (63.3) 95 (59.4) 33 (66.0) 35 (76.1)

$15 Years 151 (36.5) 58 (36.7) 65 (40.6) 17 (34.0) 11 (23.9)

11 Vascular Risk Factors, n (%) 181 (43.5) 73 (46.2) 66 (40.7) 20 (40.0) 22 (47.8) 2.02 .57 —

Full-Scale IQ, Mean (SD) 108.6 (7.1) 107.9 (7.6) 108.5 (6.5) 110.5 (6.6) 109.4 (7.6) 1.95 .12 —

MAC-Q Score, Mean (SD) 25.4 (4.5) 25.2 (4.3) 25.2 (4.5) 25.5 (5.4) 26.3 (4.8) 0.57 .63 —

HADS Depression Score, Mean (SD) 2.6 (2.3) 2.6 (2.2) 2.6 (2.2) 2.8 (2.9) 2.6 (2.5) 0.08 .97 —

HADS Depression Score $8, n (%) 19 (4.6) 6 (3.8) 5 (3.1) 4 (8.0) 4 (8.7) 4.18 .24 —

HADS Anxiety Score, Mean (SD) 4.3 (2.9) 4.3 (2.8) 4.3 (2.9) 4.2 (3.0) 4.5 (2.8) 0.14 .93 —

HADS Anxiety Score $8, n (%) 57 (13.7) 22 (13.9) 23 (14.2) 6 (12.0) 6 (13.0) 0.18 .98 —

APOE ε4 Allele Carrier, n (%) 115 (27.6) 38 (24.1) 26 (16.0) 26 (52.0) 25 (54.3) 43.14 ,.001 3,4 . 1,2

Positive Amyloid Scan (Aβ1), n (%) 96 (23.1) 0 (0) 0 (0) 50 (100) 46 (100) 416.00 ,.001 3,4 . 1,2

Plasma Cortisol Level, ng/mL, Mean (SD) 143.9 (62.7) 99.2 (25.4) 191.4 (54.2) 91.0 (31.3) 187.8 (47.4) 172.40 ,.001 2,4 . 1,3

Baseline Cognition Scores, Mean (SD)

Global cognition 0.04 (0.03) 20.04 (0.05) 0.04 (0.05) 0.06 (0.08) 0.11 (0.08) 1.18 .32 —

Episodic memory 0.08 (0.04) 0.12 (0.06) 0.08 (0.06) 0.04 (0.10) 0.07 (0.10) 0.18 .91 —

Executive function 0.01 (0.05) 20.16 (0.07) 0.06 (0.07) 20.01 (0.11) 0.14 (0.12) 2.67 .047 2,4 . 1

Language 0.10 (0.05) 20.03 (0.07) 0.06 (0.07) 0.13 (0.11) 0.22 (0.12) 1.28 .28 —

Attention 20.01 (0.04) 20.11 (0.06) 20.05 (0.06) 0.10 (0.11) 0.01 (0.11) 0.98 .40 —

Number of vascular risk factors, full-scale IQ, HADS depression and anxiety scores, plasma cortisol levels, and baseline cognitive test scores are adjusted for age and APOE genotype.
Numbers in parentheses in column headings for the four groups are used to define group numbers used in pairwise contrasts (p , .05). Some frequencies do not sum to total number for
group due to missing data.

Aβ, amyloid-β; APOE ε4, apolipoprotein epsilon 4; HADS, Hospital Anxiety and Depression Scale; MAC-Q, Memory Complaints Questionnaire.
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Subjective Memory Complaints

The Memory Complaint Questionnaire (38) was used to assess
subjective memory complaints. The Memory Complaint Ques-
tionnaire is a six-item scale that assesses the extent to which
an individual experiences memory difficulties in everyday
situations (e.g., remembering a telephone number) relative to
when she or he was in high school. Scores range from 7 to 35,
with scores $25 indicative of clinically significant subjective
memory impairment.

Neuropsychological Assessment

Comprehensive clinician-administered neuropsychological
evaluations were conducted at baseline and 18-, 36-, 54-,
and 72-month follow-ups. The Wechsler Test of Adult Reading
was used to estimate full-scale IQ (39). Composite measures
of cognitive function were derived based on theory and clinical
consensus (40). An episodic memory composite score was
composed of standardized scores for the California Verbal
Learning Test, Second Edition delayed recall, Logical Memory
delayed recall, and the Rey Complex Figure Test delayed
recall. An executive function composite score was composed
of scores on the Letter Fluency and Category Fluency Fruit/
Furniture Switching. An attention composite score was com-
posed of scores on the Digit Symbol and Digit Span.
A language composite score was composed of scores on
the Boston Naming Test and Category Fluency Animals/Boys’
Names total score. Factor analyses revealed strong loadings
(i.e., all factor loadings $ 0.40) of each of the component
measures on these composite scores. A global cognition
score was also computed by averaging scores across these
four cognitive domains at each assessment.

Data Analysis

Simple descriptive statistics were computed to summarize
sample characteristics, which were compared between the
high- and low-cortisol and Aβ groups using analyses of
variance for continuous variables and chi-squared analyses
for categorical variables. Linear mixed-effects models were
conducted using IBM SPSS Statistics for Windows, version 22
(IBM Corp., Armonk, NY), to evaluate the relation between
baseline plasma cortisol and Aβ levels, other risk factors, and
cognitive test scores over the 72-month study period. Plasma
cortisol level (low vs. high), baseline Aβ level (SUVR-based
classification of Aβ2 or Aβ1), age, sex, APOE genotype
(ε4 carrier vs. non-ε4 carrier), Hospital Anxiety and Depression
Scale anxiety scores, and radiotracer type were entered as
fixed effects/covariates; baseline cognitive test scores as a
covariate; and composite cognitive test scores as dependent
variables in separate analyses. Cohen’s d and 95% confi-
dence intervals were computed to estimate effect sizes of
group differences at the 72-month assessment.

RESULTS

Of the 416 CN older adults who completed the baseline
assessment, 402 (96.6%), 389 (93.5%), 379 (91.1%), and
347 (83.4%) completed 18-, 36-, 54-, and 72-month follow-
ups, respectively. Table 1 shows characteristics of the full
sample and the sample stratified according to cortisol and Aβ
48 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Ja
status at the baseline assessment. Compared with the low-
cortisol/Aβ2 and high-cortisol/Aβ2 groups, the low-cortisol/
Aβ1 and high-cortisol/Aβ1 groups were older and more likely
to be APOE ε4 allele carriers. No differences between the
cortisol/Aβ groups were observed on the Hospital Anxiety and
Depression Scale scores. Analyses of baseline cognitive test
scores revealed a significant between-group difference in
executive function scores, with the high-cortisol/Aβ2 and
high-cortisol/Aβ1 groups scoring higher than the low-corti-
sol/Aβ2 group. None of the other baseline cognitive test
scores differed.

Table 2 shows results of models evaluating the effect of Aβ
and plasma cortisol values on changes in global cognition and
individual cognitive domains over the 72-month study period.
Results of these analyses revealed a significant interaction of
Aβ 3 time on all composite scores (Cohen d values compar-
ing cognitive test scores in Aβ1 vs. Aβ2 CN older adults at the
72-month assessment 5 0.52 for global cognition, 0.65 for
episodic memory, 0.51 for executive function, 0.42 for lan-
guage, and 0.37 for attention). They further revealed a
significant interaction of plasma cortisol 3 Aβ 3 time on
global cognition, episodic memory, and executive function
composite scores. Inspection of this interaction revealed that
compared with Aβ1 CN older adults with low cortisol levels,
those with high cortisol levels had moderately lower episodic
memory (d 5 0.50) and executive function (d 5 0.59) and a
small magnitude reduction in global cognition (d 5 0.32)
scores at the 72-month assessment (Figure 1). Neither the
level of depression nor anxiety symptoms moderated
cortisol 3 Aβ 3 time interactions, all F , 2.56, all p . .05.
Further, incorporation of depressive symptoms and vascular
risk factors into the linear mixed-effects models did not
change the results.
DISCUSSION

Results of this study supported our hypothesis that Aβ1 would
be associated with greater cognitive decline, and that high
plasma cortisol levels would moderate cognitive decline
related to Aβ1, such that Aβ1 CN older adults with high
plasma cortisol levels would have greater rates of decline in
cognitive function compared with Aβ1 CN older adults with
low plasma cortisol levels. By convention (41), the combined
effect of high cortisol level and Aβ1 was moderate in
magnitude for episodic memory and executive function and
small in magnitude for global cognition. The increased rate of
decline in Aβ1 CN older adults with high cortisol levels was
independent of the effects of known risk factors for cognitive
decline, including age, sex, APOE genotype, and anxiety
symptoms. Taken together, these findings replicate and
extend results from prior studies in animals (13–16) and
humans (17–22,26,27,42), which implicate dysregulation of
the HPA axis in cognitive dysfunction and suggest that
increased plasma cortisol levels may interact with Aβ1 to
accelerate cognitive decline in the preclinical stages of AD.

The finding that high cortisol level and Aβ1 interacted to
accelerate decline in episodic memory is consistent with the
well-known neurotoxic effects of cortisol on the hippocampus
(8,25,29,43), which has a key role in facilitation of episodic
memory processes. Because HPA axis activity is inhibited
nuary 2017; 2:45–52 www.sobp.org/BPCNNI
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Table 2. Results of Linear Mixed-Effects Models Evaluating Relation Between Plasma Cortisol Levels, Ab, and Cognitive
Change Over a 72-Month Period in Healthy Older Adults

Global Cognition Episodic Memory Executive Function Attention Language

F p F p F p F p F p

Plasma Cortisol Level 1.77 .18 1.81 .18 0.44 .51 4.31 .038 1.36 .24

Aβ 3.61 .058 0.05 .81 4.92 .027 2.74 .098 0.18 .67

Time 32.93 ,.001 5.21 .023 14.05 ,.001 13.06 ,.001 10.11 .002

Plasma Cortisol Level 3 Aβ 5.37 .021 1.67 .20 4.80 .029 5.20 .023 1.74 .19

Plasma Cortisol Level 3 Time 2.37 .12 3.15 .076 1.80 .18 0.13 .71 4.77 .029

Aβ 3 Time 28.36 ,.001 15.11 ,.001 8.70 .003 9.34 .002 5.36 .021

Plasma Cortisol Level 3 Aβ 3 Time 4.41 .036 4.25 .039 7.21 .007 0.27 .60 2.65 .104

Models are adjusted for age, sex, APOE genotype, baseline anxiety symptoms, radiotracer type, and baseline cognitive test scores.
Aβ, amyloid-β.
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by hippocampally mediated corticosteroid feedback (44–46),
greater age-related hippocampal atrophy could itself result in
reduced inhibition of cortisol production, which may in turn
lead to further hippocampal degeneration and reduced epi-
sodic memory function. In the current study, we also observed
that high plasma cortisol levels accelerated Aβ1-related
decline in global cognition and executive function. Although
previous studies have focused on the effects of HPA axis
dysregulation on hippocampal volume and hippocampally
mediated aspects of cognition such as memory (18,25–29),
corticosteroid receptors are expressed widely throughout the
brain (47). This finding, coupled with results of the current
study indicating the strongest magnitude interaction of cortisol
and Aβ levels in predicting decline in executive function,
suggests that increased cortisol levels and Aβ1 may interact
to produce more widespread deleterious effects on cognitive
function, particularly executive function, in preclinical AD.
Clinically, these findings underscore the potential importance
of assessing and monitoring cortisol levels in CN older adults.
One hypothesis arising from results of the current study is that
therapeutic strategies designed to reduce plasma cortisol
levels [e.g., 11β-hydroxysteroid dehydrogenase type 1 inhib-
itors (48); cognitive-behavioral stress management (49,50)]
may also be useful in forestalling cognitive decline in Aβ1
older adults.

Several mechanisms may account for the observed asso-
ciation between increased plasma cortisol levels and greater
cognitive decline. First, prolonged exposure to elevated glu-
cocorticoid levels has been linked directly to hippocampal
A B

Figure 1. Slopes of (A) global cognition, (B) episodic memory, and (C) executi
month study period. Groups were operationalized as follows: baseline plasm
(standardized uptake value ratio–based classification of Aβ2 or high Aβ level [Aβ1
and Depression Scale anxiety scores, and radiotracer type were entered as fixed
cognition scores as the dependent variable.

Biological Psychiatry: Cognitive Neuroscience and
neurodegeneration (25,28,29,43), as well as cerebral Aβ for-
mation and induction of tau hyperphosphorylation in the
hippocampus and prefrontal cortex in animal models
(13,14,51,52). Thus, long-term hyperactivation of the HPA axis
may contribute to the hallmark neuropathological changes
associated with AD, which in turn negatively affect cognitive
function over time. Longitudinal studies with serial measure-
ments of cortisol and Aβ will be useful in better understanding
the interrelation between cortisol and Aβ levels, as well as
other markers of AD-related neuropathology (e.g., tau) and
how they relate to cognitive changes in very early to preclinical
stages of AD.

High cortisol levels were not associated with the severity of
symptoms or positive screens for anxiety and depression in
either the Aβ1 or Aβ2 groups when considered cross-
sectionally at the baseline assessment or prospectively as
potential moderators of cortisol and Aβ-related cognitive
changes. The effect of cortisol and Aβ levels on cognitive
decline observed in the current study was thus independent of
and not moderated by these symptoms. The absence of any
relationship between anxiety and depression and cortisol
levels in this sample aligns with the broader literature showing
that relationships between cortisol levels and symptoms of
anxiety and depression are inconsistent (24,53). The equivocal
nature of this relationship in different studies has been
attributed to the small sample sizes studied, differences in
cortisol assessment methodologies, and lack of consideration
of the phenotypic heterogeneity of anxiety and depression
symptoms (24,53–55). Given that CN older adults with anxiety
C

ve function scores in plasma cortisol and amyloid-β (Aβ) groups over the 72-
a cortisol level (low vs. high based on median split), baseline Aβ level
]). Age, sex, APOE genotype (ε4 carrier vs. non-ε4 carrier), Hospital Anxiety
effects/covariates; baseline cognitive test scores as a covariate, and global
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and mood disorders were excluded from the AIBL study,
additional research is needed to assess whether these disor-
ders, or dimensions of them [e.g., anhedonic depression (54)],
may modify risk for cognitive decline in Aβ1 CN older adults
with high cortisol levels.

This study has some methodological limitations. First, the
AIBL cohort of CN older adults has relatively high levels of
education and premorbid intelligence and was enriched to
include approximately 30% of older adults who were APOE ε4
allele carriers. Thus, it is unclear whether results of the current
study may generalize to general population–based samples of
older adults in which the prevalence of ε4 allele carriers is
14% (56). Second, given the skewed and non-normal distri-
bution of plasma cortisol levels, a median split procedure was
used to dichotomize the sample into older adults with low and
high plasma cortisol levels. Further research will be useful in
determining specific threshold ranges of plasma cortisol levels
that are directly and interactively with Aβ1 associated with
cognitive changes in preclinical AD, and how fluctuations in
cortisol levels throughout the course of the day, as well as
other factors implicated in the stress response system, such
as corticotropin-releasing factor, relate to these outcomes.
Of note, only 13 CN older adults in the AIBL sample had
plasma cortisol levels higher than the normal range of 70 to
280 ng/mL (57), although sensitivity analyses revealed that
results did not change when data for these individuals were
excluded. Results of the current study therefore suggest that
increased cortisol levels within the normal range can directly
and interactively with Aβ1 predict cognitive decline in pre-
clinical AD. Third, although plasma cortisol levels evidenced a
moderately strong interactive effect with Aβ1 in predicting
cognitive decline, p values for these interactions were only
borderline significant, albeit p , .05, and were not adjusted for
multiple comparisons. Further, other blood-based biomarkers
associated with HPA axis dysregulation [e.g., inflammatory
cytokines (58)], which were not assessed in the current study,
may additionally contribute to risk prediction models of
cognitive decline in preclinical AD. Further, emerging findings
from the Alzheimer Disease Neuroimaging Initiative suggests
that a combination of plasma and cerebrospinal fluid markers
other than Aβ and tau, including cortisol, apolipoprotein A-II,
and fibroblast growth factor 4, reliably predict progression
from MCI to AD (59). Additional research is needed to evaluate
how levels of cortisol and other plasma and cerebrospinal fluid
markers, alone and interactively with Aβ1, may predict
cognitive decline in preclinical AD.

Notwithstanding these limitations, results of this study indi-
cate that increased plasma cortisol levels in combination with
Aβ1 are associated with accelerated decline in global cognition,
episodic memory, and executive function in preclinical AD.
These findings suggest that the combination of cortisol and
Aβ assessments may be useful biomarkers in predicting cogni-
tive decline in preclinical AD. Further research is needed to
attempt to replicate these results in general population–based
samples and evaluate longitudinal interrelationships among
cortisol and Aβ levels and cognitive changes; characterize
neurobiological mechanisms underlying HPA axis dysregulation,
Aβ, and other AD-related neuropathological markers; and eval-
uate the efficacy of HPA axis–targeted therapies in mitigating
cognitive decline in the early to preclinical phase of AD.
50 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging Ja
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