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Mild Cognitive Impairment to Alzheimer Disease
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IMPORTANCE A reliable method of detecting Alzheimer disease (AD) in its prodromal state is
needed for patient stratification in clinical trials or for personalizing existing or potential
upcoming therapies. Current cerebrospinal fluid (CSF)– or imaging-based single biomarkers
for AD offer reliable identification of patients with underlying AD but insufficient prediction of
the rate of AD progression.

OBJECTIVE To optimize prediction of progression from mild cognitive impairment (MCI) to
AD dementia by combining information from diverse patient variables.

DESIGN, SETTING, AND PARTICIPANTS This cohort study from the Alzheimer Disease
Neuroimaging Initiative (ADNI) enrolled 928 patients with MCI at baseline and 249 selected
variables available in the ADNI data set. Variables included clinical and demographic data,
cognitive scores, magnetic resonance imaging–based brain volumetric data, the
apolipoprotein E (APOE) and translocase of outer mitochondrial membrane 40 homolog
(TOMM40) genotypes, and analyte levels measured in the CSF and plasma. Data were
collected in July 2012 and analyzed from July 1, 2012, to June 1, 2015.

MAIN OUTCOMES AND MEASURES Progression from MCI to AD within 1 to 6 years. To
determine whether combinations of markers could predict progression from MCI to AD
within 1 to 6 years, the elastic net algorithm was used in an iterative resampling of a training-
and test-based variable selection and modeling approach.

RESULTS Among the 928 patients with MCI in the ADNI database, 94 had 224 of the required
variables available for the modeling. The results showed the contributions of age, Clinical
Dementia Rating Sum of Boxes composite test score, hippocampal volume, and multiple
plasma and CSF factors in modeling progression to AD. A combination of apolipoprotein A-II
and cortisol levels in plasma and fibroblast growth factor 4, heart-type fatty acid binding
protein, calcitonin, and tumor necrosis factor–related apoptosis-inducing ligand receptor 3
(TRAIL-R3) in CSF allowed for reliable prediction of disease status 3 years from the time of
sample collection (80% classification accuracy, 88% sensitivity, and 70% specificity).

CONCLUSIONS AND RELEVANCE These study findings suggest that a combination of markers
measured in plasma and CSF, distinct from β-amyloid and tau, could prove useful in
predicting midterm progression from MCI to AD dementia. Such a large-scale,
multivariable-based analytical approach could be applied to other similar large data sets
involving AD and beyond.
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T he use of biomarkers for early diagnosis of Alzheimer
disease (AD) has been investigated widely, and several
studies showed that cognitively normal individuals who

later develop AD dementia can be identified earlier in the dis-
ease course by use of imaging and cerebrospinal fluid (CSF)
biomarkers.1,2 Levels of β-amyloid (Aβ) in the brain demon-
strate the earliest AD-type changes3 and can be detected by
measuring CSF levels of Aβ42 or using positron emission to-
mography (PET). Unfortunately, the temporal resolution of Aβ-
based biomarkers is too weak to accurately predict progres-
sion of the disease course from mild cognitive impairment
(MCI) to AD dementia.

Alzheimer disease can be represented by a continuum from
cognitively normal-appearing individuals with evidence of ac-
cumulation of Aβ in the brain to those with severe dementia.4,5

Mild cognitive impairment is an intermediate stage between
normal cognitive decline with aging and dementia; during this
stage, patients have a greater cognitive decline than expected
for their age and educational level.6-8 Current data indicate that
rates of MCI progression to AD are estimated at approxi-
mately 10% per year9 and represent the population with the
highest risks for progression to AD.10 Other causes of MCI in-
clude dementia with Lewy bodies, Parkinson disease, fronto-
temporal dementia, and stroke.6 Owing to the heterogeneity
of the causes of MCI, research criteria and biomarkers were
defined; according to the most recently published diagnostic
criteria,6 neurodegeneration and cerebral amyloidosis are
necessary to determine which individual with MCI has under-
lying AD. In the search for diagnostic and prognostic biomark-
ers of AD, the field has focused heavily on CSF11 and neuro-
imaging markers.12 For example, CSF levels of Aβ4211 or Aβ
levels on PET imaging13 are both indicative of cerebral amy-
loidosis, and magnetic resonance imaging (MRI), fludeoxy-
glucose F 18–labeled (FDG)–PET,12 or CSF levels of t-tau11 are
usually used to assess neurodegeneration. Although several
studies showed that progression of individuals with MCI to de-
mentia within a few years could be predicted by MRI
findings,14,15 FDG-PET,16 or CSF examination,17 no unified or
combination of biomarkers has emerged to predict the time
to progression.

Herein, we used data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), which is an ongoing, longitudi-
nal, multicenter study.18 In this data set, we identified com-
binations of specific individual patient variables that predict
progression from MCI to AD 1 to 6 years before the clinical di-
agnosis of AD.

Methods
Patient Data
Data used in preparing this article were produced by ADNI
(eMethods in the Supplement) and were obtained in July 2012.
A complete list of the 249 individual patient variables used for
the analysis is provided in the Table.19-25 A summary of pa-
tient variables among the 928 study participants with MCI are
available in eTable 1 in the Supplement. Data preprocessing is
detailed in the eMethods in the Supplement. The individual

baseline patient variables used in this study were only avail-
able for participants in ADNI acquired until 2010. For the mul-
tivariable analysis to model progression to AD with baseline
data, 94 patients with MCI had all 224 required variables
(Figure 1A). The number of patients with MCI included in the
follow-up declined during the 6 years (eFigure 1 in the Supple-
ment). In the most recent version of the ADNI database, 24 of
the 94 patients with MCI had a longer follow-up. The ADNI
study was approved by institutional review boards of all par-
ticipating institutions. Informed written consent was ob-
tained from all participants at each site.

Utility of Established Biomarkers of AD
To test the utility of the established AD CSF biomarkers Aβ42,
t-tau, and p-tau to predict progression from MCI to AD in the
ADNI cohort, we used these variables to model the binary end
point of stable MCI vs progression to AD within 1 to 6 years (pro-
gression was defined by an on-site physician). We calculated
a receiver operating characteristic curve using the R pROC
package.26 We computed 95% CIs for the area under the curve
using the approach of DeLong et al.27 Not all 928 participants
underwent lumbar puncture, and the exact sample size avail-
able for each CSF biomarker and progression time point is
shown in eTable 2 in the Supplement.

Visualization of the Associations Among Large Panels
of Variables
To depict associations within and between the 8 categories of
variables, a circular visualization of the correlation plot was
generated using the qgraph package for R.28 This plot is based
on calculating pairwise rank correlations between complete
observations. The plot displays a network with nodes repre-
senting the variables and edges linking any pairs of variables
based on their correlation coefficient with each other. A thresh-
old of |r| > 0.3 was used to display only the strongest correla-
tions. The circular visualization of the correlation plot in-
cludes all 249 variables and data available from 928 patients.

Selection and Combination of Specific Individual
Patient Variables
Prediction of progression from MCI to AD used 224 variables
in only 94 of the 928 patients because data were missing for
most of the patients (Figure 1A, Table, and eMethods and eTable
3 in the Supplement). To identify variables associated with pro-
gression from MCI to AD within 1 to 6 years, we used an elas-
tic net algorithm29,30 in an iterative resampling of a training-
and test-based variable selection and modeling approach.
Briefly, elastic net was applied on the training subset to select
variables that best discriminate between patients with stable
and progressive MCI. The quality of each model was esti-
mated on the test data set using the classification accuracy rate,
sensitivity, specificity, and stability. One thousand resam-
plings of the learning and test data sets were performed, and
the variables were ranked according to their number of ap-
pearances across permutations in the elastic net models to se-
lect the top variables. To refine these predictive models to a
simpler final model, we then used a forward classification strat-
egy and compared our results with those obtained by chance.
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Table. Individual Patient Variables Included in the Study

Category by Index Variable

Clinical and demographic characteristics

1 Sexa

2 No. of years of education

3 Age at enrollmenta

Cognitive scores

4 MMSE scorea,b

5 ADAS total scorea,c

6 ADAS modifieda,c

7 CDR composite test scorea,d

8 CDR-SOB composite test scorea,d

9 FAQe

10 GDSf

11 Modified Hachinski Ischemia Scale scoreg

12 NIQ Total scoreh

MRI-based brain regional volumes

13 Brain volume

14 EICV

15 Ventricular volume normalized by EICVa

16 Hippocampal volume normalized by EICVa

17 Inferior lateral ventricular volume normalized by EICVa

18 Middle temporal volume normalized by EICVa

19 Inferior temporal volume normalized by EICVa

20 Fusiform cortical volume normalized by EICVa

21 Entorhinal cortical volume normalized by EICVa

Genetic

22 APOE4 allele carriera

23 No. of APOE4 alleles

24 TOMM40 PolyT variable-length polymorphism allele 1

25 TOMM40 PolyT variable-length polymorphism allele 2

Fluid variables

26 8-Iso-PGF2α

27 8,12-iso-iPF2α

28 CSF white blood cell count

29 CSF red blood cell count

30 CSF total protein concentration

31 CSF glucose level

32 Total plasma homocysteine level

33 Plasma Aβ40 level

34 Plasma Aβ42 level

35 Plasma Aβ40:Aβ42 ratio

Established AD CSF biomarkers

36 CSF Aβ42 levela

37 CSF t-tau levela

38 CSF p-tau levela

39 CSF Aβ42 to t-tau ratio

40 CSF Aβ42 to p-tau ratio

41 CSF p-tau to t-tau ratio

Subset of CSF communicomei

42 to 115 74 CSF analytes measured by multiplex assay (among 159 measured)a

Subset of plasma communicomei

116 to 249 134 Plasma analytes measured by multiplex assay (among 190
measured)a

Abbreviations: Aβ, β-amyloid;
ADAS, Alzheimer Disease (AD)
Assessment Scale; APOE4,
apolipoprotein ε4; CDR, Clinical
Dementia Rating scale; CSF,
cerebrospinal fluid; EICV, estimated
intracranial volume; FAQ, Functional
Assessment Questionnaire; GDS,
Geriatric Depression Scale; iPF2α,
isoprostane F2α; MCI, mild cognitive
impairment; MMSE, Mini-Mental
State Examination; MRI, magnetic
resonance imaging; NIQ,
Neuropsychiatric Inventory Q; PGF2α,
prostaglandin F2α; SOB, Sum of
Boxes; TOMM40, translocase of outer
mitochondrial membrane 40
homolog.
a Variable included in the modeling of

progression from MCI to AD.
b Folstein et al.19

c Rosen et al.20

d Morris.21

e Pfeffer et al.22

f Sheikh and Yesavage.23

g Rosen et al.24

h Kaufer et al.25

i Indicates the subset of the secreted
proteome that cells use to
communicate with each other,
measured with Luminex assays
(Myriad RBM).
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Data were analyzed from July 1, 2012, to June 1, 2015. A com-
plete description of the approach used is detailed in the
eMethods in the Supplement.

Results
Utility of Established Biomarkers of AD
to Predict Progression to AD
First, we evaluated the utility of CSF levels of Aβ42, t-tau, and
p-tau to predict progression to AD within 1 to 6 years and per-

formed a receiver operating characteristic analysis. These es-
tablished diagnostic AD biomarkers combined (Figure 1B) or
separately (eFigure 2 in the Supplement) cannot be used for
reliable prediction of progression from MCI to AD. Hence, ex-
ploring other fluid markers and clinical variables is indicated
for this purpose.

Associations Among Large Panels of Variables
To get an overview of the associations among the 249 vari-
ables available across 928 patients with MCI from the ADNI da-
tabase (Table), we generated a circular visualization of corre-
lation plot (Figure 2). This plot revealed complex relationships
within and between groups of variables. For instance, concen-
trations of secreted proteins involved in intercellular commu-
nication (previously termed the communicome31) measured in
plasma or CSF samples were strongly correlated within and be-
tween these 2 body fluids. Age and sex were correlated with
the communicome but not with the established CSF biomark-
ers Aβ42 and t-tau. In contrast, the apolipoprotein E (APOE)
genotype was linked to established CSF biomarkers but not to
the communicome. Proteins of the communicome are linked
differentially with established AD CSF biomarkers and MRI-
based brain volumes, which suggests that variables from dif-
ferent categories could carry complementary information
about the disease. This information may help to predict pro-
gression from MCI to AD.

Prediction of Progression From MCI to AD
Within 1 to 6 Years
To determine whether combinations of markers could pre-
dict progression from MCI to AD within 1 to 6 years, we had to
restrict our analysis to 94 patients with MCI and 224 vari-
ables with sufficient available baseline data (Table and eTable
3 in the Supplement). Of these 94 patients, a growing number
had progression to AD within 1 to 6 years, whereas the fol-
low-up of individuals dropped below 50% after 4 years (eFig-
ure 1 in the Supplement; cohort characteristics are given in
eTable 4 in the Supplement).

We built predictive models for each progression time point
in 6- or 12-month increments (Figure 3A and eMethods in the
Supplement); for each model we calculated sensitivity and
specificity using the top 2 to 20 selected variables (Figure 3B).
Among all models that used 20 variables, those predicting 2
or 3 years were most accurate (sensitivity/specificity, 76%/
70% for 2 years; 87%/73% for 3 years), whereas the other mod-
els had low sensitivity (for 1, 1.5, and 6 years) or low specific-
ity (for 4 and 5 years). As indicated by the SD across
permutations, prediction of progression within 4 years or later
was less stable than earlier prediction of progression to AD
(Figure 3C).

A total of 80 of 224 variables were selected at least once
as one of the top 20 variables in the different models (eTable
5 in the Supplement). The most frequently used top variable
was the neuropsychometric Clinical Dementia Rating Sum of
Boxes composite test score (CDR SOB), which was included in
6 of 7 models. The molecular marker CSF tumor necrosis factor–
related apoptosis-inducing ligand receptor 3 (TRAIL-R3) was
included in 5 models, plasma apolipoprotein A-II (ApoA-II) and

Figure 1. Initial Analysis of the Data Available for 928 Patients
With Mild Cognitive Impairment (MCI)
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4 y, 0.68 (0.55-0.80)
5 y, 0.67 (0.53-0.81)
6 y, 0.63 (0.41-0.86)

A, Overview of the 249 variables (listed in the Table and eTable 3 in the
Supplement) is given in 8 categories. B, Receiver operating characteristic curves
combine cerebrospinal fluid (CSF) β-amyloid 42 (Aβ42), t-tau, and p-tau in
modeling progression from MCI to Alzheimer disease (AD) within 1 to 6 years.
The areas under the curve (AUCs) (95% CI) are given for each year. Receiver
operating characteristic curves for Aβ42, t-tau, and p-tau separately are
available in eFigure 2 in the Supplement; the sample size available is shown in
eTable 2 in the Supplement. Diagonal line indicates completely random
discrimination; MRI, magnetic resonance imaging.
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CSF fibroblast growth factor 4 (FGF-4) were included in 4 mod-
els, and 13 additional variables were selected at least 3 times,
including CSF Aβ42, hippocampal volume, and age (the im-
portance index for each variable is given in Figure 3D).

Importance of Specific Categories of Patient Variables
to Prediction of Progression Within 3 Years
To investigate whether patient variables from specific cat-
egories are sufficient by themselves to predict progression to
AD, we tested 7 models using only certain types of variables
instead of variables from all groups as used above (Figure 4).
We focused on progression to AD within 3 years because the
best trade-off between sensitivity and specificity was
obtained for this point; for clinical trial planning, this point

is also the most relevant. Clinical and demographic charac-
teristics and the number of APOE4 alleles between patients
with stable MCI and those with progression to AD within 3
years were similar (eTable 4 in the Supplement). Those with
progression to AD had lower levels of CSF Aβ42 (P = .02,
unpaired 2-tailed t test).

Classification accuracy and sensitivity (Figure 4 and eFig-
ure 3A in the Supplement) were similarly high for all models
except for those using AD CSF biomarkers and the APOE4 geno-
type, MRI-based brain regional volumes, or cognitive scores.
Models using the plasma and CSF communicomes or all vari-
ables were superior in accuracy and sensitivity to the other
models. Specificity was relatively low for all models but again
better for models using the plasma and CSF communicomes

Figure 2. Associations Among 249 Variables Shown by a Circular Visualization of Correlation (CVC) Plot
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Includes 928 patients with mild cognitive impairment. Most of the variables
were unavailable for the 928 patients, as indicated in Figure 1A. We calculated
the correlation coefficient between pairwise complete observations. Lines
(edges) represent the Spearman rank correlation coefficient (r) between 2
variables (nodes). Variables were grouped in 8 categories. Category names of
the variables are indicated; except for the cerebrospinal fluid (CSF) and plasma

communicome categories, the 249 variables are labeled by numbers (more
details on categories and variables are given in the Table and eTable 3 in the
Supplement). The CVC plot was thresholded at |r| > 0.3 to display only the
strongest correlations. AD indicates Alzheimer disease; MRI, magnetic
resonance imaging.
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or all variables (eFigure 3B in the Supplement), making these
2 models the best overall.

Remarkably, only 6 plasma and CSF analytes were neces-
sary to reach a maximal sensitivity of 88% and a specificity of
70% (eFigure 3A and B in the Supplement). The 6 analytes out-
performed a model that included AD CSF biomarkers Aβ42, t-
tau, and p-tau together with APOE4 allele carrier status
(Figure 4). Furthermore, this top model clearly performed bet-
ter than randomly generated variables and is not improved by
including the plasma Aβ42:Aβ40 ratio (eTable 6 in the Supple-
ment). This signature was composed of 2 analytes measured
in plasma (ApoA-II and cortisol) and 4 proteins measured in
the CSF (FGF-4, heart-type fatty acid binding protein [FABP-
heart], calcitonin, and TRAIL-R3). The mean level of TRAIL-R3

was significantly decreased for patients with progression to AD
(mean, 0.63 [95% CI, 0.56-0.70] vs 0.81 [0.71-0.92]; P < .01, un-
paired 2-tailed t test), whereas mean levels of ApoA-II (531 [478-
583] vs 445 [402-487]), cortisol (165 [149-180] vs 141 [125-
158]), and FGF-4 (49 [44-54] vs 39 [33-46]) were significantly
increased (eFigure 4 in the Supplement; P < .05, unpaired
2-tailed t tests). Levels of calcitonin and FABP-heart were not
significantly different between patients with stable MCI and
those with progression to AD (t tests, P = .07 and P = .14, re-
spectively). The levels of 4 of these 6 analytes in addition to
CSF Aβ42 were significantly different between patients with
stable MCI and progressive MCI, whereas CSF levels of t-tau
and p-tau were not (eFigure 5 in the Supplement; P = .28 and
P = .70, respectively). In summary, the levels of only 6 plasma

Figure 3. Prediction of Progression From Mild Cognitive Impairment (MCI) to Alzheimer Disease (AD) Within 1 to 6 Years
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and CSF analytes were sufficient for the prediction of progres-
sion from MCI to AD within 3 years.

Discussion
In this study, we used data from the ADNI database and com-
bined clinical and demographic data, cognitive measure-
ments, brain volumetric data, APOE and translocase of outer
mitochondrial membrane 40 homolog (TOMM40) geno-
types, and a large number of analyte measurements in the CSF
and plasma to predict progression from MCI to AD during 6
years of patient follow-up. The ADNI database is a valuable re-
source to better understand AD clinically, particularly with re-
spect to the integration of imaging data.18 In contrast, com-
prehensive analyses with a broader range of clinical or
biological variables, such as the one reported herein, are chal-
lenging owing to the rather patchwork collection of the data
over time (Figure 1A). As exemplified herein, this approach re-
sults in a relatively small sample size for applicable patients
with MCI (94 herein owing to the limited availability of the CSF
multiplex data, for example), and identification of an appro-
priate independent validation data set is difficult or even im-
possible. These 2 points are probably the major limitations of
our study. Despite these limitations, a network visualization
approach allowed us to produce an overview of the complex
relationships between and within categories of variables in
ADNI (Figure 2). To overcome the shortcoming of missing data
for modeling progression of MCI to AD, we performed thor-
ough cross validation (eg, 1000 times resampling of the pa-
tients included in the learning and test data sets for an unbi-
ased and robust estimate of the accuracy of the models32),
evaluation of stability of the models to assess the potential gen-
eralization of findings from this study to other data sets,33,34

and a final forward classification step to avoid overfitting of
the predictive models. Altogether, the validation strategies ap-
plied by us are based on current standards in the field,33-36 and

we believe their combination resulted in the most rigorous vali-
dation that can be performed in the absence of an additional
cohort.

A key question in modeling progression from MCI to AD
relates to the temporal utility of measured variables. Of the fea-
tures most consistently selected across progression time points
(Figure 2D), 7 were analytes measured in CSF (including Aβ42)
and 7 were analytes measured in plasma. Only 3 non–body fluid
variables (CDR SOB, hippocampal volume, and age) were
selected, and the APOE4 genotype was not included despite
the APOE4 allele being the major genetic risk factor for
AD.37 The utility of APOE4 allele status in predicting time to
progression to AD is not clear because results have been
inconsistent.38-41 In contrast, age, which is the strongest en-
vironmental risk factor for developing sporadic AD,42 was in-
cluded in the model of long-term progression. A high rate of
decline in hippocampal size is known to be one of the best MRI-
based biomarkers of AD,43,44 and hippocampal atrophy was se-
lected as a predictor of short-term progression. The compos-
ite CDR SOB score was in the top features for almost all of the
progressive time points studied (6 of 7). Our data indicate that
the baseline CDR SOB composite test score combined with
other variables could be useful for predicting short-term, mid-
term, and long-term progression from MCI to AD and support
its use for planning and analyzing clinical trials.

Being able to select patients with midterm progression
from MCI to AD is of major interest for assessing the efficacy
of new AD therapies or for stratifying clinical trial cohorts.
Herein, we demonstrated that signatures relying on predic-
tion of progression within 2 and 3 years were more robust than
those relying on other progressive time points in terms of sen-
sitivity, specificity, and stability. At least for the time points
after 4 years, this outcome may be influenced in large part
by the lack of a sufficient sample size. Several other
teams32,38,41,45-48 analyzed the ADNI data and identified meth-
ods to predict progression from MCI to AD within 3 years, pri-
marily focusing on imaging data. The best model so far had a
classification accuracy rate close to what we report herein but
a sensitivity of only 53%.38 Although imaging is one of the best
methods for monitoring AD, a blood test that predicts progres-
sion from MCI to AD within a defined period of time would be
immensely useful because blood samples are easy to collect.
However, other investigators49 reported that using the ADNI
data set plasma analytes alone could not adequately predict
midterm progression to AD. Recently, 2 candidate signatures
of progression to AD were proposed.50,51 These studies were,
however, limited to the prediction of progression to AD 1 year
before its clinical diagnosis. In addition to plasma biomark-
ers, CSF-based biomarkers may be particularly representa-
tive of the disease progression because CSF is in close contact
with the central nervous system. For instance, low CSF con-
centrations of Aβ42 in combination with high levels of t-tau
and p-tau are sensitive and specific diagnostic biomarkers of
AD.17,52 In the entire population with MCI in the ADNI cohort,
however, our study shows that CSF concentrations of these
markers cannot be used to reliably predict time to progres-
sion to AD (Figure 1B). Consequently, inclusion of additional
markers needs to be investigated, and we found that markers

Figure 4. Prediction of Progression From Mild Cognitive Impairment
to Alzheimer Disease (AD) Within 3 Years
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in plasma or CSF used separately for modeling provided a rela-
tively high sensitivity in detecting progression to AD (Figure 4).
Once further validated, the marker sets in each of these fluids
may be useful for patient enrichment in clinical trials, albeit per-
haps with lower accuracy. Our data indicate that combining as
few as 6 specific communicome markers measured in CSF and
plasma may be more powerful in predicting the progression from
MCI to AD and in identifying patients with stable MCI.

This finding is in line with what a group of investigators
previously introduced as the communicome being “a reduc-
tionist approach to study brain aging and disease.”53(p185) Be-
cause the plasma and CSF proteome is particularly challeng-
ing for unbiased proteomics approaches, such as mass
spectrometry, measuring the secreted communication fac-
tors of cells is a straightforward way to explore the integrated
response of cellular communication between tissues in physi-
ological and pathophysiological states. Although this method
is biased and restricted, it focuses on the proteome of key bio-
logical communication factors. Still, future studies should ex-
amine the diagnostic utility of the 6 markers to discriminate
AD from other causes of dementia and to assess this signa-
ture and each candidate marker as a potential biomarker of cog-
nitive decline in independent and larger sample sets. Indeed,
individual communicome plasma and CSF factors—and thereby
the proposed signature—can be influenced by variables such
as age, sex, or ethnicity.

So far, independent evidence reported in other data sets
supports an association of the top CSF and plasma markers
identified in this study with AD. Of the 6 markers predicting
progression to AD within 3 years, CSF levels of FABP-heart and
TRAIL-R3 and plasma levels of cortisol and ApoA-II have al-
ready been reported by others to be involved in AD.54-64 Lev-
els of FABP-heart are increased in CSF samples from patients
with progression of MCI to AD54 and highly associated with t-
tau and p-tau levels and the ratio of Aβ42 to tau.55 Plasma cor-
tisol levels reflect the degree of cognitive impairment in AD,56

are associated with the presence of the APOE4 allele,57 and cor-
relate with Aβ-plaque brain burden measured by Pittsburgh
compound B–labeled PET.58 High cortisol levels were also re-

ported previously in plasma, serum, or CSF in patients with
MCI and AD compared with controls56,59,60 and are also
associated with more rapidly increasing symptoms of
dementia.56,60 Apolipoproteins have been implicated in the
cause of AD,61-63 and low levels of plasma ApoA-II are associ-
ated with an increased risk for cognitive decline in cogni-
tively normal individuals.62 The TRAIL-R3 marker is in-
volved in the regulation of apoptosis and upregulated in
cognitively impaired individuals compared with controls.64

The apparent discrepancy between our finding for ApoA-II
and TRAIL-R3 in patients with MCI and findings by others62,64

in cognitively normal individuals can perhaps be explained by
a possiblly different and so far unknown contribution of
ApoA-II and TRAIL-R3 in the disease progression from nor-
mal cognition to MCI and from MCI to AD. We report herein
an increase in ApoA-II levels in patients with progression of
MCI to AD compared with stable MCI. This finding suggests that
individual factors, such as ApoA-II levels, show a biphasic as-
sociation with disease progression, an aspect that should be
further explored in other data sets and biological experi-
ments. Finally, to the best of our knowledge, no direct link
among calcitonin, FGF-4, and AD or MCI has been reported pre-
viously. These proteins have multiple functions, including use
in immune pathways that could link them to altered immune
function in AD.65

Conclusions
We performed an integrative statistical analysis of the MCI data
subset in the ADNI database and showed that the combina-
tion of selected plasma and CSF markers may be sufficient for
the prediction of midterm progression from MCI to AD. We pro-
pose that such a large-scale analytical approach using the ADNI
database could be applied to other similar large data sets in AD
and beyond. Markers or signatures thereby identified could be-
come helpful for early diagnosis and monitoring of patients,
patient stratification in clinical trials, or personalizing exist-
ing or upcoming therapies.
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